Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 353
Filter
1.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: covidwho-20241326

ABSTRACT

A next-generation sequencing (NGS) study identified a very high viral load of Torquetenovirus (TTV) in KD patients. We aimed to evaluate the feasibility of a newly developed quantitative species-specific TTV-PCR (ssTTV-PCR) method to identify the etiology of KD. We applied ssTTV-PCR to samples collected from 11 KD patients and 22 matched control subjects who participated in our previous prospective study. We used the NGS dataset from the previous study to validate ssTTV-PCR. The TTV loads in whole blood and nasopharyngeal aspirates correlated highly (Spearman's R = 0.8931, p < 0.0001, n = 33), supporting the validity of ssTTV-PCR. The ssTTV-PCR and NGS results were largely consistent. However, inconsistencies occurred when ssTTV-PCR was more sensitive than NGS, when the PCR primer sequences mismatched the viral sequences in the participants, and when the NGS quality score was low. Interpretation of NGS requires complex procedures. ssTTV-PCR is more sensitive than NGS but may fail to detect a fast-evolving TTV species. It would be prudent to update primer sets using NGS data. With this precaution, ssTTV-PCR can be used reliably in a future large-scale etiological study for KD.


Subject(s)
Mucocutaneous Lymph Node Syndrome , Torque teno virus , Humans , Torque teno virus/genetics , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/genetics , Polymerase Chain Reaction , Prospective Studies , High-Throughput Nucleotide Sequencing/methods
3.
Dev Growth Differ ; 65(4): 221-223, 2023 May.
Article in English | MEDLINE | ID: covidwho-20237684

ABSTRACT

This is a meeting report of "The workshop of research and techniques using next-generation sequencing (NGS) for developmental biology 2022." About 20 researchers attended the workshop. We discuss their NGS studies and techniques.


Subject(s)
Developmental Biology , High-Throughput Nucleotide Sequencing , High-Throughput Nucleotide Sequencing/methods
4.
J Med Virol ; 95(5): e28753, 2023 05.
Article in English | MEDLINE | ID: covidwho-2325314

ABSTRACT

Prompt detection of viral respiratory pathogens is crucial in managing respiratory infection including severe acute respiratory infection (SARI). Metagenomics next-generation sequencing (mNGS) and bioinformatics analyses remain reliable strategies for diagnostic and surveillance purposes. This study evaluated the diagnostic utility of mNGS using multiple analysis tools compared with multiplex real-time PCR for the detection of viral respiratory pathogens in children under 5 years with SARI. Nasopharyngeal swabs collected in viral transport media from 84 children admitted with SARI as per the World Health Organization definition between December 2020 and August 2021 in the Free State Province, South Africa, were used in this study. The obtained specimens were subjected to mNGS using the Illumina MiSeq system, and bioinformatics analysis was performed using three web-based analysis tools; Genome Detective, One Codex and Twist Respiratory Viral Research Panel. With average reads of 211323, mNGS detected viral pathogens in 82 (97.6%) of the 84 patients. Viral aetiologies were established in nine previously undetected/missed cases with an additional bacterial aetiology (Neisseria meningitidis) detected in one patient. Furthermore, mNGS enabled the much needed viral genotypic and subtype differentiation and provided significant information on bacterial co-infection despite enrichment for RNA viruses. Sequences of nonhuman viruses, bacteriophages, and endogenous retrovirus K113 (constituting the respiratory virome) were also uncovered. Notably, mNGS had lower detectability rate for severe acute respiratory syndrome coronavirus 2 (missing 18/32 cases). This study suggests that mNGS, combined with multiple/improved bioinformatics tools, is practically feasible for increased viral and bacterial pathogen detection in SARI, especially in cases where no aetiological agent could be identified by available traditional methods.


Subject(s)
Bacterial Infections , COVID-19 , RNA Viruses , Viruses , Humans , Child , Child, Preschool , RNA, Viral/genetics , South Africa , Viruses/genetics , RNA Viruses/genetics , Bacteria/genetics , Metagenomics/methods , High-Throughput Nucleotide Sequencing/methods , Sensitivity and Specificity
5.
Enferm Infecc Microbiol Clin (Engl Ed) ; 41(5): 284-289, 2023 May.
Article in English | MEDLINE | ID: covidwho-2325117

ABSTRACT

INTRODUCTION: The emergence of multiple variants of SARS-CoV-2 during the COVID-19 pandemic is of great world concern. Until now, their analysis has mainly focused on next-generation sequencing. However, this technique is expensive and requires sophisticated equipment, long processing times, and highly qualified technical personnel with experience in bioinformatics. To contribute to the analysis of variants of interest and variants of concern, increase the diagnostic capacity, and process samples to carry out genomic surveillance, we propose a quick and easy methodology to apply, based on Sanger sequencing of 3 gene fragments that code for protein spike. METHODS: Fifteen positive samples for SARS-CoV-2 with a cycle threshold below 25 were sequenced by Sanger and next-generation sequencing methodologies. The data obtained were analyzed on the Nextstrain and PANGO Lineages platforms. RESULTS: Both methodologies allowed the identification of the variants of interest reported by the WHO. Two samples were identified as Alpha, 3 Gamma, one Delta, 3 Mu, one Omicron, and 5 strains were close to the initial Wuhan-Hu-1 virus isolate. According to in silico analysis, key mutations can also be detected to identify and classify other variants not evaluated in the study. CONCLUSION: The different SARS-CoV-2 lineages of interest and concern are classified quickly, agilely, and reliably with the Sanger sequencing methodology.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Pandemics , High-Throughput Nucleotide Sequencing
6.
Front Immunol ; 13: 1016440, 2022.
Article in English | MEDLINE | ID: covidwho-2326523

ABSTRACT

Background: Metagenomic next-generation sequencing (mNGS) technology has been central in detecting infectious diseases and helping to simultaneously reveal the complex interplay between invaders and their hosts immune response characteristics. However, it needs to be rigorously assessed for clinical utility. The present study is the first to evaluate the clinical characteristics of the host DNA-removed mNGS technology for detecting SARS-CoV-2, revealing host local immune signaling and assisting genomic epidemiology. Methods: 46 swab specimens collected from COVID-19 patients were assayed by two approved commercial RT-qPCR kits and mNGS. The evolutionary tree of SARS-CoV-2 was plotted using FigTree directly from one sample. The workflow of removing the host and retaining the host was compared to investigate the influence of host DNA removal on the performances of mNGS. Functional enrichment analysis of DEGs and xCell score were used to explore the characteristics of host local immune signaling. Results: The detection rate of mNGS achieved 92.9% (26/28) for 28 samples with a Ct value ≤ 35 and 81.1% (30/37) for all 46 samples. The genome coverage of SARS-CoV-2 could reach up to 98.9% when the Ct value is about 20 in swab samples. Removing the host could enhance the sensitivity of mNGS for detecting SARS-CoV-2 from the swab sample but does not affect the species abundance of microbes RNA. Improving the sequencing depth did not show a positive effect on improving the detection sensitivity of SARS-CoV-2. Cell type enrichment scores found multiple immune cell types were differentially expressed between patients with high and low viral load. Conclusions: The host DNA-removed mNGS has great potential utility and superior performance on comprehensive identification of SARS-CoV-2 and rapid traceability, revealing the microbiome's transcriptional profiles and host immune responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Genomics , DNA , High-Throughput Nucleotide Sequencing , Technology
7.
Nat Methods ; 20(6): 795-796, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2312057
8.
Clin Lab ; 69(5)2023 May 01.
Article in English | MEDLINE | ID: covidwho-2320515

ABSTRACT

BACKGROUND: Mucor infection cannot be ignored in patients with pulmonary shadowing with cavitation. This paper reports a case of mucormycosis during the COVID-19 pandemic in Hubei Province, China. METHODS: An anesthesiology doctor was initially diagnosed as COVID-19 due to changes in lung imaging. After anti-infective, anti-viral, and symptomatic supportive treatment, some of symptoms were relieved. But some symptoms -'chest pain and discomfort', accompanied by chest sulking and short breath after activities, did not ease. At last, Lichtheimia ramose was detected later by metagenomic next generation sequencing (mNGS) in the bronchoalveolar lavage fluid (BALF). RESULTS: After adjusting amphotericin B for anti-infective treatment, the patient's infection lesions were shrunk and the symptoms were significantly relieved. CONCLUSIONS: The diagnosis of invasive fungal infections is very difficult, and mNGS can make an accurate pathogenic diagnosis of invasive fungal diseases for the clinic and provide a basis for clinical treatment.


Subject(s)
COVID-19 , Invasive Fungal Infections , Mucormycosis , Pneumonia , Humans , Mucormycosis/diagnosis , Mucormycosis/epidemiology , Pandemics , China/epidemiology , Antiviral Agents , Bronchoalveolar Lavage Fluid , High-Throughput Nucleotide Sequencing
9.
J Mol Evol ; 91(4): 391-404, 2023 08.
Article in English | MEDLINE | ID: covidwho-2314755

ABSTRACT

The advent of next generation sequencing technologies (NGS) has greatly accelerated our understanding of critical aspects of organismal biology from non-model organisms. Bats form a particularly interesting group in this regard, as genomic data have helped unearth a vast spectrum of idiosyncrasies in bat genomes associated with bat biology, physiology, and evolution. Bats are important bioindicators and are keystone species to many eco-systems. They often live in proximity to humans and are frequently associated with emerging infectious diseases, including the COVID-19 pandemic. Nearly four dozen bat genomes have been published to date, ranging from drafts to chromosomal level assemblies. Genomic investigations in bats have also become critical towards our understanding of disease biology and host-pathogen coevolution. In addition to whole genome sequencing, low coverage genomic data like reduced representation libraries, resequencing data, etc. have contributed significantly towards our understanding of the evolution of natural populations, and their responses to climatic and anthropogenic perturbations. In this review, we discuss how genomic data have enhanced our understanding of physiological adaptations in bats (particularly related to ageing, immunity, diet, etc.), pathogen discovery, and host pathogen co-evolution. In comparison, the application of NGS towards population genomics, conservation, biodiversity assessment, and functional genomics has been appreciably slower. We reviewed the current areas of focus, identifying emerging topical research directions and providing a roadmap for future genomic studies in bats.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Chiroptera/genetics , High-Throughput Nucleotide Sequencing , Pandemics , COVID-19/genetics , Genomics
10.
Front Public Health ; 11: 1177695, 2023.
Article in English | MEDLINE | ID: covidwho-2319785

ABSTRACT

Identification of SARS-CoV-2 lineages has shown to provide invaluable information regarding treatment efficacy, viral transmissibility, disease severity, and immune evasion. These benefits provide institutions with an expectation of high informational upside with little insight in regards to practicality with implementation and execution of such high complexity testing in the midst of a pandemic. This article details our institution's experience implementing and using Next Generation Sequencing (NGS) to monitor SARS-CoV-2 lineages in the northern Chicagoland area throughout the pandemic. To date, we have sequenced nearly 7,000 previously known SARS-CoV-2 positive samples from various patient populations (e.g., outpatient, inpatient, and outreach sites) to reduce bias in sampling. As a result, our hospital was guided while making crucial decisions about staffing, masking, and other infection control measures during the pandemic. While beneficial, establishing this NGS procedure was challenging, with countless considerations at every stage of assay development and validation. Reduced staffing prompted transition from a manual to automated high throughput workflow, requiring further validation, lab space, and instrumentation. Data management and IT security were additional considerations that delayed implementation and dictated our bioinformatic capabilities. Taken together, our experience highlights the obstacles and triumphs of SARS-CoV-2 sequencing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , High-Throughput Nucleotide Sequencing , Hospitals
11.
Sci Rep ; 13(1): 6934, 2023 04 28.
Article in English | MEDLINE | ID: covidwho-2299691

ABSTRACT

Rapid and recurrent breakthroughs of new SARS-CoV-2 strains (variants) have prompted public health authorities worldwide to set up surveillance networks to monitor the circulation of variants of concern. The use of next-generation sequencing technologies has raised the need for quality control assessment as required in clinical laboratories. The present study is the first to propose a validation guide for SARS-CoV-2 typing using three different NGS methods fulfilling ISO15189 standards. These include the assessment of the risk, specificity, accuracy, reproducibility, and repeatability of the methods. Among the three methods used, two are amplicon-based involving reverse transcription polymerase chain reaction (Artic v3 and Midnight v1) on Oxford Nanopore Technologies while the third one is amplicon-based using reverse complement polymerase chain reaction (Nimagen) on Illumina technology. We found that all methods met the quality requirement (e.g., 100% concordant typing results for accuracy, reproducibility, and repeatability) for SARS-CoV-2 typing in clinical setting. Additionally, the typing results emerging from each of the three sequencing methods were compared using three widely known nomenclatures (WHO, Pangolineage, and Nextclade). They were also compared regarding single nucleotide variations. The outcomes showed that Artic v3 and Nimagen should be privileged for outbreak investigation as they provide higher quality results for samples that do not meet inclusion criteria for analysis in a clinical setting. This study is a first step towards validation of laboratory developed NGS tests in the context of the new European regulation for medical devices and in vitro diagnostics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , High-Throughput Nucleotide Sequencing/methods , Reproducibility of Results , Accreditation
12.
Methods Mol Biol ; 2621: 279-292, 2023.
Article in English | MEDLINE | ID: covidwho-2296486

ABSTRACT

In this chapter, next-generation sequencing of the entire viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is described. Successful sequencing of the SARS-CoV-2 virus is dependent upon quality of the specimen, adequate coverage of the entire genome, and up-to-date annotation. Some of the advantages of performing SARS-CoV-2 surveillance using next-generation sequencing are scalability, high-throughput, cost, and full genome analysis. Some of the disadvantages can be expensive instrumentation, large upfront reagent and supply costs, increased time-to-result, computational needs, and complicated bioinformatics. This chapter will provide an overview of a modified FDA Emergency Use Authorization procedure for the genomic sequencing of SARS-CoV-2. The procedure is also referred to as the research use only (RUO) version.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing/methods , SARS-CoV-2/genetics
13.
Microbiol Spectr ; 11(3): e0020623, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2295330

ABSTRACT

Carryover contamination during amplicon sequencing workflow (AMP-Seq) put the accuracy of the high-throughput detection for pathogens at risk. The purpose of this study is to develop a carryover contaminations-controlled AMP-Seq (ccAMP-Seq) workflow to enable accurate qualitative and quantitative detection for pathogens. By using the AMP-Seq workflow to detect SARS-CoV-2, Aerosols, reagents and pipettes were identified as potential sources of contaminations and ccAMP-Seq was then developed. ccAMP-Seq used filter tips and physically isolation of experimental steps to avoid cross contamination, synthetic DNA spike-ins to compete with contaminations and quantify SARS-CoV-2, dUTP/uracil DNA glycosylase system to digest the carryover contaminations, and a new data analysis procedure to remove the sequencing reads from contaminations. Compared to AMP-Seq, the contamination level of ccAMP-Seq was at least 22-folds lower and the detection limit was also about an order of magnitude lower-as low as one copy/reaction. By testing the dilution series of SARS-CoV-2 nucleic acid standard, ccAMP-Seq showed 100% sensitivity and specificity. The high sensitivity of ccAMP-Seq was further confirmed by the detection of SARS-CoV-2 from 62 clinical samples. The consistency between qPCR and ccAMP-Seq was 100% for all the 53 qPCR-positive clinical samples. Seven qPCR-negative clinical samples were found to be positive by ccAMP-Seq, which was confirmed by extra qPCR tests on subsequent samples from the same patients. This study presents a carryover contamination-controlled, accurate qualitative and quantitative amplicon sequencing workflow that addresses the critical problem of pathogen detection for infectious diseases. IMPORTANCE Accuracy, a key indicator of pathogen detection technology, is compromised by carryover contamination in the amplicon sequencing workflow. Taking the detection of SARS-CoV-2 as case, this study presents a new carryover contamination-controlled amplicon sequencing workflow. The new workflow significantly reduces the degree of contamination in the workflow, thereby significantly improving the accuracy and sensitivity of the SARS-CoV-2 detection and empowering the ability of quantitative detection. More importantly, the use of the new workflow is simple and economical. Therefore, the results of this study can be easily applied to other microorganism, which has great significance for improving the detection level of microorganism.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Workflow , Sensitivity and Specificity , High-Throughput Nucleotide Sequencing
14.
Ther Adv Cardiovasc Dis ; 17: 17539447231168471, 2023.
Article in English | MEDLINE | ID: covidwho-2295311

ABSTRACT

BACKGROUND: Heart failure (HF) is the most common cardiovascular diseases and the leading cause of cardiovascular diseases related deaths. Increasing molecular targets have been discovered for HF prognosis and therapy. However, there is still an urgent need to identify novel biomarkers. Therefore, we evaluated biomarkers that might aid the diagnosis and treatment of HF. METHODS: We searched next-generation sequencing (NGS) dataset (GSE161472) and identified differentially expressed genes (DEGs) by comparing 47 HF samples and 37 normal control samples using limma in R package. Gene ontology (GO) and pathway enrichment analyses of the DEGs were performed using the g: Profiler database. The protein-protein interaction (PPI) network was plotted with Human Integrated Protein-Protein Interaction rEference (HiPPIE) and visualized using Cytoscape. Module analysis of the PPI network was done using PEWCC1. Then, miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed by Cytoscape software. Finally, we performed receiver operating characteristic (ROC) curve analysis to predict the diagnostic effectiveness of the hub genes. RESULTS: A total of 930 DEGs, 464 upregulated genes and 466 downregulated genes, were identified in HF. GO and REACTOME pathway enrichment results showed that DEGs mainly enriched in localization, small molecule metabolic process, SARS-CoV infections, and the citric acid tricarboxylic acid (TCA) cycle and respiratory electron transport. After combining the results of the PPI network miRNA-hub gene regulatory network and TF-hub gene regulatory network, 10 hub genes were selected, including heat shock protein 90 alpha family class A member 1 (HSP90AA1), arrestin beta 2 (ARRB2), myosin heavy chain 9 (MYH9), heat shock protein 90 alpha family class B member 1 (HSP90AB1), filamin A (FLNA), epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), cullin 4A (CUL4A), YEATS domain containing 4 (YEATS4), and lysine acetyltransferase 2B (KAT2B). CONCLUSIONS: This discovery-driven study might be useful to provide a novel insight into the diagnosis and treatment of HF. However, more experiments are needed in the future to investigate the functional roles of these genes in HF.


Subject(s)
Cardiovascular Diseases , Heart Failure , MicroRNAs , Humans , Gene Expression Profiling/methods , Biomarkers , MicroRNAs/genetics , Computational Biology/methods , High-Throughput Nucleotide Sequencing , Heat-Shock Proteins/genetics , Cullin Proteins/genetics
15.
PLoS One ; 18(4): e0284483, 2023.
Article in English | MEDLINE | ID: covidwho-2292873

ABSTRACT

SARS-CoV-2 surveillance of viral populations in wastewater samples is recognized as a useful tool for monitoring epidemic waves and boosting health preparedness. Next generation sequencing of viral RNA isolated from wastewater is a convenient and cost-effective strategy to understand the molecular epidemiology of SARS-CoV-2 and provide insights on the population dynamics of viral variants at the community level. However, in low- and middle-income countries, isolated groups have performed wastewater monitoring and data has not been extensively shared in the scientific community. Here we report the results of monitoring the co-circulation and abundance of variants of concern (VOCs) of SARS-CoV-2 in Uruguay, a small country in Latin America, between November 2020-July 2021 using wastewater surveillance. RNA isolated from wastewater was characterized by targeted sequencing of the Receptor Binding Domain region within the spike gene. Two computational approaches were used to track the viral variants. The results of the wastewater analysis showed the transition in the overall predominance of viral variants in wastewater from No-VOCs to successive VOCs, in agreement with clinical surveillance from sequencing of nasal swabs. The mutations K417T, E484K and N501Y, that characterize the Gamma VOC, were detected as early as December 2020, several weeks before the first clinical case was reported. Interestingly, a non-synonymous mutation described in the Delta VOC, L452R, was detected at a very low frequency since April 2021 when using a recently described sequence analysis tool (SAM Refiner). Wastewater NGS-based surveillance of SARS-CoV-2 is a reliable and complementary tool for monitoring the introduction and prevalence of VOCs at a community level allowing early public health decisions. This approach allows the tracking of symptomatic and asymptomatic individuals, who are generally under-reported in countries with limited clinical testing capacity. Our results suggests that wastewater-based epidemiology can contribute to improving public health responses in low- and middle-income countries.


Subject(s)
COVID-19 , Wastewater , Humans , SARS-CoV-2/genetics , Wastewater-Based Epidemiological Monitoring , COVID-19/epidemiology , Genomics , High-Throughput Nucleotide Sequencing
16.
PLoS One ; 18(4): e0283219, 2023.
Article in English | MEDLINE | ID: covidwho-2301833

ABSTRACT

The global pandemic caused by SARS-CoV-2 has increased the demand for scalable sequencing and diagnostic methods, especially for genomic surveillance. Although next-generation sequencing has enabled large-scale genomic surveillance, the ability to sequence SARS-CoV-2 in some settings has been limited by the cost of sequencing kits and the time-consuming preparations of sequencing libraries. We compared the sequencing outcomes, cost and turn-around times obtained using the standard Illumina DNA Prep kit protocol to three modified protocols with fewer clean-up steps and different reagent volumes (full volume, half volume, one-tenth volume). We processed a single run of 47 samples under each protocol and compared the yield and mean sequence coverage. The sequencing success rate and quality for the four different reactions were as follows: the full reaction was 98.2%, the one-tenth reaction was 98.0%, the full rapid reaction was 97.5% and the half-reaction, was 97.1%. As a result, uniformity of sequence quality indicated that libraries were not affected by the change in protocol. The cost of sequencing was reduced approximately seven-fold and the time taken to prepare the library was reduced from 6.5 hours to 3 hours. The sequencing results obtained using the miniaturised volumes showed comparability to the results obtained using full volumes as described by the manufacturer. The adaptation of the protocol represents a lower-cost, streamlined approach for SARS-CoV-2 sequencing, which can be used to produce genomic data quickly and more affordably, especially in resource-constrained settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Whole Genome Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Gene Library
17.
Sci Rep ; 13(1): 5024, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2288939

ABSTRACT

With the continuous development of information technology and the running speed of computers, the development of informatization has led to the generation of increasingly more medical data. Solving unmet needs such as employing the constantly developing artificial intelligence technology to medical data and providing support for the medical industry is a hot research topic. Cytomegalovirus (CMV) is a kind of virus that exists widely in nature with strict species specificity, and the infection rate among Chinese adults is more than 95%. Therefore, the detection of CMV is of great importance since the vast majority of infected patients are in a state of invisible infection after the infection, except for a few patients with clinical symptoms. In this study, we present a new method to detect CMV infection status by analyzing high-throughput sequencing results of T cell receptor beta chains (TCRß). Based on the high-throughput sequencing data of 640 subjects from cohort 1, Fisher's exact test was performed to evaluate the relationship between TCRß sequences and CMV status. Furthermore, the number of subjects with these correlated sequences to different degrees in cohort 1 and cohort 2 were measured to build binary classifier models to identify whether the subject was CMV positive or negative. We select four binary classification algorithms: logistic regression (LR), support vector machine (SVM), random forest (RF), and linear discriminant analysis (LDA) for side-by-side comparison. According to the performance of different algorithms corresponding to different thresholds, four optimal binary classification algorithm models are obtained. The logistic regression algorithm performs best when Fisher's exact test threshold is 10-5, and the sensitivity and specificity are 87.5% and 96.88%, respectively. The RF algorithm performs better at the threshold of 10-5, with a sensitivity of 87.5% and a specificity of 90.63%. The SVM algorithm also achieves high accuracy at the threshold value of 10-5, with a sensitivity of 85.42% and specificity of 96.88%. The LDA algorithm achieves high accuracy with 95.83% sensitivity and 90.63% specificity when the threshold value is 10-4. This is probably because the two-dimensional distribution of CMV data samples is linearly separable, and linear division models such as LDA are more effective, while the division effect of nonlinear separable algorithms such as random forest is relatively inaccurate. This new finding may be a potential diagnostic method for CMV and may even be applicable to other viruses, such as the infectious history detection of the new coronavirus.


Subject(s)
Artificial Intelligence , Cytomegalovirus Infections , Adult , Humans , Cytomegalovirus/genetics , Algorithms , Cytomegalovirus Infections/diagnosis , High-Throughput Nucleotide Sequencing , Receptors, Antigen, T-Cell
18.
Virol J ; 20(1): 44, 2023 03 08.
Article in English | MEDLINE | ID: covidwho-2262804

ABSTRACT

BACKGROUND: Previously developed TaME-seq method for deep sequencing of HPV, allowed simultaneous identification of the human papillomavirus (HPV) DNA consensus sequence, low-frequency variable sites, and chromosomal integration events. The method has been successfully validated and applied to the study of five carcinogenic high-risk (HR) HPV types (HPV16, 18, 31, 33, and 45). Here, we present TaME-seq2 with an updated laboratory workflow and bioinformatics pipeline. The HR-HPV type repertoire was expanded with HPV51, 52, and 59. As a proof-of-concept, TaME-seq2 was applied on SARS-CoV-2 positive samples showing the method's flexibility to a broader range of viruses, both DNA and RNA. RESULTS: Compared to TaME-seq version 1, the bioinformatics pipeline of TaME-seq2 is approximately 40× faster. In total, 23 HPV-positive samples and seven SARS-CoV-2 clinical samples passed the threshold of 300× mean depth and were submitted to further analysis. The mean number of variable sites per 1 kb was ~ 1.5× higher in SARS-CoV-2 than in HPV-positive samples. Reproducibility and repeatability of the method were tested on a subset of samples. A viral integration breakpoint followed by a partial genomic deletion was found in within-run replicates of HPV59-positive sample. Identified viral consensus sequence in two separate runs was > 99.9% identical between replicates, differing by a couple of nucleotides identified in only one of the replicates. Conversely, the number of identical minor nucleotide variants (MNVs) differed greatly between replicates, probably caused by PCR-introduced bias. The total number of detected MNVs, calculated gene variability and mutational signature analysis, were unaffected by the sequencing run. CONCLUSION: TaME-seq2 proved well suited for consensus sequence identification, and the detection of low-frequency viral genome variation and viral-chromosomal integrations. The repertoire of TaME-seq2 now encompasses seven HR-HPV types. Our goal is to further include all HR-HPV types in the TaME-seq2 repertoire. Moreover, with a minor modification of previously developed primers, the same method was successfully applied for the analysis of SARS-CoV-2 positive samples, implying the ease of adapting TaME-seq2 to other viruses.


Subject(s)
COVID-19 , Papillomavirus Infections , Humans , Multiplex Polymerase Chain Reaction/methods , Reproducibility of Results , SARS-CoV-2/genetics , Papillomaviridae/genetics , Genomics , High-Throughput Nucleotide Sequencing/methods , DNA, Viral/genetics , COVID-19 Testing
19.
Optom Vis Sci ; 100(4): 276-280, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2265369

ABSTRACT

SIGNIFICANCE: Acute infectious conjunctivitis poses significant challenges to eye care providers. It can be highly transmissible, and because etiology is often presumed, correct treatment and management can be difficult. This study uses unbiased deep sequencing to identify causative pathogens of infectious conjunctivitis, potentially allowing for improved approaches to diagnosis and management. PURPOSES: This study aimed to identify associated pathogens of acute infectious conjunctivitis in a single ambulatory eye care center. CASE REPORTS: This study included patients who presented to the University of California Berkeley eye center with signs and symptoms suggestive of infectious conjunctivitis. From December 2021 to July 2021, samples were collected from seven subjects (ages ranging from 18 to 38). Deep sequencing identified associated pathogens in five of seven samples, including human adenovirus D, Haemophilus influenzae , Chlamydia trachomatis , and human coronavirus 229E. CONCLUSIONS: Unbiased deep sequencing identified some unexpected pathogens in subjects with acute infectious conjunctivitis. Human adenovirus D was recovered from only one patient in this series. Although all samples were obtained during the COVID-19 pandemic, only one case of human coronavirus 229E and no SARS-CoV-2 were identified.


Subject(s)
COVID-19 , Conjunctivitis , Humans , Acute Disease , California/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , High-Throughput Nucleotide Sequencing , Pandemics
20.
Curr Opin Infect Dis ; 36(2): 115-123, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2257920

ABSTRACT

PURPOSE OF REVIEW: The coronavirus disease 2019 pandemic demonstrated broad utility of pathogen sequencing with rapid methodological progress alongside global distribution of sequencing infrastructure. This review considers implications for now moving clinical metagenomics into routine service, with respiratory metagenomics as the exemplar use-case. RECENT FINDINGS: Respiratory metagenomic workflows have completed proof-of-concept, providing organism identification and many genotypic antimicrobial resistance determinants from clinical samples in <6 h. This enables rapid escalation or de-escalation of empiric therapy for patient benefit and reducing selection of antimicrobial resistance, with genomic-typing available in the same time-frame. Attention is now focussed on demonstrating clinical, health-economic, accreditation, and regulatory requirements. More fundamentally, pathogen sequencing challenges the traditional culture-orientated time frame of microbiology laboratories, which through automation and centralisation risks becoming increasingly separated from the clinical setting. It presents an alternative future where infection experts are brought together around a single genetic output in an acute timeframe, aligning the microbiology target operating model with the wider human genomic and digital strategy. SUMMARY: Pathogen sequencing is a transformational proposition for microbiology laboratories and their infectious diseases, infection control, and public health partners. Healthcare systems that link output from routine clinical metagenomic sequencing, with pandemic and antimicrobial resistance surveillance, will create valuable tools for protecting their population against future infectious diseases threats.


Subject(s)
Anti-Infective Agents , COVID-19 , Communicable Diseases , Humans , Metagenomics , High-Throughput Nucleotide Sequencing , Communicable Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL